3 research outputs found

    A novel frequency reconfigurable antenna for smart grid applications in TV white space band

    Get PDF
    This paper presents the design and analysis of a frequency reconfigurable, aperture coupled rectangular patch antenna for use in smart grid applications in TV white space bands. The proposed antenna model has been realized on multi-substrate layers of Polylactic acid (PLA) material (εr=2.65, tanδ=0.003) with a ground plane sandwiched in between them. An aperture has been made in the ground plane for coupling energy to the patch. The overall system dimensions are 270×270 mm. The feature of frequency reconfigurability has been achieved by incorporating a switch and varying the reactance of the feed line on the bottom substrate. A rectangular slot on the long feed line improves impedance matching. The ON and OFF states of the switch provide two operating frequency bands namely 630.13 to 636.7 MHz and 619.16 to 625.3 MHz respectively. The proposed aperture coupled reconfigurable system operates with a maximum gain of 6.4 dB and average efficiency of 78.5% in both bands. The measured results are satisfactory and the proposed antenna will be suitable for operation in the smart grid environment

    ACS-fed e-shaped dual band uniplanar printed antenna for modern wireless communication applications

    No full text
    A printed small size (12x16.5 mm) ACS-fed e-shaped uniplanar antenna is proposed for dual band applications. The multiband operating characteristics have been achieved by integrating e-shaped radiating strips to the 50 W ACS feed line. Two simultaneously operating wide bands have been generated by using optimized radiating branch strips for the multiband applications. For obtaining size reduction and wider impedance bandwidth, e-shaped meandered elements are chosen in the design. The proposed design features the bandwidth (VSWR < 2, reflection coefficient below –10 dB) of 100 MHz in 2.4–2.5 GHz, and 2100 MHz in 4.0–6.1 GHz. The developed multiband antenna can be useful for several wireless communication applications, such as 2.4 GHz Bluetooth/RFID, WLAN (2.4/5.2/5.8 GHz), WiMAX (5.5 GHz), US public safety band (4.9 GHz), ISM band, radio frequency energy harvesting and internet of things (IoT) applications

    ACS-fed wideband mirrored Z- and L-shaped triple band uniplanar antenna for WLAN applications

    No full text
    A mirrored Z- and L-shaped printed uniplanar antenna has been proposed and developed in this paper for triple band applications. The developed geometry realizes simple radiating branches with 50 Ω Asymmetric Coplanar Strip (ACS) feedline and rectangular ground plane. It occupies a very compact area of 16×24 mm including the ground plane, the size of which is only 0.18×0.34λ at the frequency of 2.3 GHz in free space. The simulated results obtained in the environment of CST Microwave Studio package have been compared with the measured results of antenna using the PNA N5222A Vector Network Analyzer, and a good agreement of results has been achieved. For –10 dB reflection coefficient the bandwidth is about 230 MHz in the band of 2.27–2.5 GHz, 200 MHz in the band of 3.65–3.85, and 1700 MHz in the band 5.2–6.9 GHz. The proposed uniplanar antenna is not only compact in size, but also has wide bandwidths that cover the Long Term Evolution (LTE), Wireless Broadband (WiBro), Worldwide Interoperability for Microwave Access (WiMAX), Wireless Local Area Network (WLAN) and Industrial Scientific and Medical radio band (ISM) applications
    corecore